Effective date: 2015-xx-xx Number: 11561

One Step Multi-Line Screen Test Device (Oral Fluid)
Package Insert

A rapid, screening test for the simultaneous, qualitative detection of multiple drugs and metabolites in human oral fluid.

For medical and other professional in vitro diagnostic use only.

INTENDED USE & SUMMARY

The SureScreen Multi-Drug One Step Multi-Line Screen Test Device (Oral Fluid) is a lateral flow chromatographic immunoassay for the qualitative detection of Amphetamine, Cocaine, Marijuana, Methamphetamine, Opiate, Methadone, Phencyclidine, Oxycodone and their metabolites in oral fluid at the following cut-off concentrations. The detection window, when drugs can be detected in oral fluid specimens using this test, is also indicated.

Test	Calibrator	Cut-off (ng/mL)	Detection Time
Amphetamine (AMP)	d-Amphetamine	50	10 min - 72 hrs
Cocaine (COC)	Benzoylecgonine	20	10 min - 24 hrs
Marijuana (THC)	11-nor-Δ9-THC-9 COOH	30	Up to 14 hrs
Methamphetamine (MET)	d-Methamphetamine	50	10 min - 72 hrs
Opiate (OPI)	Morphine	40	1 hr - several days*
Methadone (MTD)	Methadone	45	Up to 2 days
Phencyclidine (PCP)	Phencyclidine	10	/
Oxycodone (OXY)	Oxycodone	20	Up to 14 hrs
701		0 . 1 .	1 1 0

This test will detect other related compounds, please refer to the Analytical Specificity table in this package insert.

AMP: Amphetamine is a sympathomimetic amine with therapeutic indications. The drug is often self-administered by nasal inhalation or oral ingestion.

COC: Cocaine is a potent central nervous system (CNS) stimulant and a local anesthetic derived from the coca plant (erythroxylum coca).¹

THC: Tetrahydrocannabinol, the active ingredient in the marijuana plant (*cannabis sativa*), is detectable in oral fluid shortly after use. The detection of the drug is thought to be primarily due to the direct exposure of the drug to the mouth (oral and smoking administrations) and the subsequent sequestering of the drug in the buccal cavity.²

MET: Methamphetamine is a potent stimulant chemically related to amphetamine but with greater CNS stimulation properties. The drug is often self-administered by nasal inhalation, smoking or oral ingestion.

OPI: The drug class opiates refers to any drug that is derived from the opium poppy, including naturally occurring compounds such as morphine and codeine and semi-synthetic drugs such as heroin. Opiates control pain by depressing the CNS, and demonstrate addictive properties when used for sustained periods of time. Opiates can be taken orally or by injection routes including intravenous, intramuscular and subcutaneous; illegal users may also take the intravenously or by nasal inhalation.³

*The window of detection varies for different opiates. Codeine can be detected within one hour and up to 7-21 hours after a single oral dose. Morphine is detectable for several days after a dose.

MTD: Methadone is an analgesic compound most frequently used for the treatment of opiate addiction. One clinical study suggested that the ratio of methadone to plasma was approximately 0.51. Using known half life data for plasma, the detection window in saliva is expected to be up to 2 days after use.

PCP: Phencyclidine is a hallucinogen and, can be detected in oral fluid as a result of the exchange of the drug between the circulatory system and the oral cavity.⁵

OXY: Oxycodone is a semi-synthetic opioid with a structural similarity to codeine. The drug is manufactured by modifying thebaine, an alkaloid found in the opium poppy. Oxycodone, like all opiate agonists, provides pain relief by acting on opioid receptors in the spinal cord, brain, and possibly directly in the affected tissues. Oxycodone is prescribed for the relief of moderate to high pain. The approximate half- life in serum is averaged about 14 hours.

This assay provides only a preliminary analytical test result. A more specific alternate chemical method must be used in order to obtain a confirmed analytical result. Gas chromatography/mass spectrometry (GC/MS/MS) are the preferred confirmatory methods. Professional judgment should be applied to any drug of abuse test result, particularly when preliminary positive results are indicated.

PRINCIPLE

The SureScreen Multi-Drug One Step Multi-Line Screen Test Device (Oral Fluid) is an immunoassay based on the principle of competitive binding. Drugs that may be present in the oral fluid specimen compete against their respective drug conjugate for binding sites on their specific antibody.

During testing, a portion of the oral fluid specimen migrates upward by capillary action. A drug, if present in the oral fluid specimen below its cut-off concentration, will not saturate the binding sites of its specific antibody. The antibody will then react with the drug-protein conjugate and a visible colored line will show up in the test line region of the specific drug strip. The presence of drug above the cut-off concentration in the oral fluid specimen will saturate all the binding sites of the antibody. Therefore, the colored

line will not form in the test line region.

A drug-positive oral fluid specimen will not generate a colored line in the specific test line region of the strip because of drug competition, while a drug-negative oral fluid specimen will generate a line in the test line region because of the absence of drug competition. To serve as a procedural control, a colored line will always appear at the control line region, indicating that proper volume of specimen has been added and membrane wicking has occurred.

REACENTS

Each test line in the test device contains mouse monoclonal antibody-coupled particles and corresponding drug-protein conjugates. A goat antibody is employed in each control line.

PRECAUTIONS

- For medical and other professional in vitro diagnostic use only. Do not use after the
 expiration date.
- All specimens should be considered potentially biohazardous and handled in the same manner as an infectious agent.
- The used collector and device should be discarded according to local regulations.

STORAGE AND STABILITY

Store as packaged in the sealed pouch either at room temperature or refrigerated (2-30°C). The test device is stable through the expiration date printed on the sealed pouch. The test device must remain in the sealed pouch until use. **DO NOT FREEZE.** Do not use beyond the expiration date.

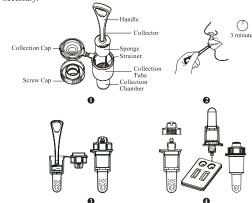
SPECIMEN COLLECTION AND PREPARATION

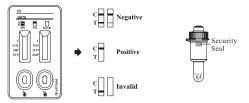
The oral fluid specimen should be collected using the collector provided with the kit. Follow the detailed Directions for Use below. No other collection devices should be used with this test. Oral fluid collected at any time of the day may be used. If specimen cannot be tested immediately, it is recommended that specimen be stored at 2-8°C or -20°C for up to 72 hours. Specimen may also be stored at room temperature for up to 48 hours. For ideal shipment conditions, transport specimen using ice packs (2-8°C).

MATERIALS

Materials Provided

· Collection tubes


- Collectors
- Security seals
 Package insert
 - Materials Required But Not Provided
- Timer


· Test devices

DIRECTIONS FOR USE

Allow the test device, specimen, and/or controls to reach room temperature (15-30°C) prior to testing. Instruct the donor to not place anything in the mouth including food, drink, gum, tobacco products for at least 10 minutes prior to collection.

- Bring the pouch to room temperature before opening it. Remove the test device from the sealed pouch and use it as soon as possible.
- 2. Remove the collector from the sealed pouch and insert the sponge end of the collector into the mouth. Actively swab the inside of the mouth and tongue to collect oral fluid for a total of 3 minutes until the sponge becomes fully saturated. Gentle pressing of the sponge between the tongue and teeth will assist saturation. No hard spots should be felt on the sponge when saturated. See illustration 1 and 2.
- Open the collection cap then remove the saturated oral fluid collector from the mouth and place into the collection chamber. Press sponge fully against the strainer to express as much oral fluid as possible into the collection chamber. Discard the collector. Snap the collection cap on the collection tube tightly. See illustration 3.
- 4. Place the test device on a clean and level surface. Twist open the screw cap from the collection tube.* Invert the collection tube and transfer 3 drops of oral fluid (approximately 100 µL) into each specimen well of the test device, and start the timer. Replace screw cap on the collection tube. Avoid trapping air bubbles in the specimen well. See illustration 4.
- *Note: When opening the screw cap, do not open the collection cap attached to the collection chamber.
- Wait for the colored line(s) to appear. Read results at 10 minutes. Do not interpret results after 20 minutes.
- Secure collection tube with security seal and send to laboratory for confirmation if necessary.

INTERPRETATION OF RESULTS

(Please refer to the previous illustration)

NEGATIVE:* A colored line in the control line region (C) and a colored line in the test line region (T) for a specific drug indicate a negative result. This indicates that the drug concentration in the oral fluid specimen is below the designated cut-off level for that specific drug.

*NOTE: The shade of color in the test line region (T) may vary, but it should be considered negative whenever there is even a faint colored line.

POSITIVE: À colored line in the control line region (C) but no line in the test line region (T) for a specific drug indicates a positive result. This indicates that the drug concentration in the oral fluid specimen exceeds the designated cut-off for that specific drug. INVALID: Control line (C) fails to appear. Insufficient specimen volume or incorrect procedural techniques are the most likely reasons for control line failure. Review the procedure and repeat the test using a new test device. If the problem persists, discontinue using the lot immediately and contact your local distributor.

QUALITY CONTROL

A procedural control is included in the test. A colored line appearing in the control region (C) is considered an internal procedural control. It confirms sufficient specimen volume, adequate membrane wicking and correct procedural technique. Control standards are not supplied with this kit; however, it is recommended that positive and negative controls be tested as a good laboratory practice to confirm the test procedure and to verify proper test performance.

LIMITATIONS

- The SureScreen Multi-Drug One Step Multi-Line Screen Test Device (Oral Fluid)
 provides only a qualitative, preliminary analytical result. A secondary analytical
 method must be used to obtain a confirmed result. Gas chromatography/mass
 spectrometry (GC/MS) or gas chromatography/tandem mass spectrometry
 (GC/MS/MS) is the preferred confirmatory method.
- A positive test result does not indicate the concentration of drug in the specimen or the route of administration.
- 3. A negative result may not necessarily indicate a drug-free specimen. Drug may be present in the specimen below the cut-off level of the test.

PERFORMANCE CHARACTERISTICS

Analytical Sensitivity

A phosphate-buffered saline (PBS) pool was spiked with drugs to target concentrations of \pm 50% cut-off and tested with the SureScreen Multi-Drug One Step Multi-Line Screen Test Device (Oral Fluid). The results are summarized below.

Drug Conc. AMP		ЛP	COC		THC		MET O		OPI M		MTD		PCP		OXY	
(Cut-off range)	-	+	-	+	-	+	-	+		+	-	+	-	+	-	+
0% Cut-off	30	0	30	0	30	0	30	0	30	0	30	0	30	0	90	0
-50% Cut-off	30	0	30	0	30	0	30	0	30	0	30	0	30	0	90	0
+50% Cut-off	0	30	0	30	0	30	0	30	0	30	0	30	0	30	0	90

Analytical Specificity

The following table lists the concentration of compounds (ng/mL) above which the SureScreen Multi-Drug One Step Multi-Line Screen Test Device (Oral Fluid) identified positive results at 10 minutes.

AMPHETAMINE (AMP)	OXYCODONE (OXY)				
d-Amphetamine	50	Hydrocodone	6,250		
d,l-Amphetamine	125	Levorphanol	12,500		
β-Phenylethylamine	4,000	Naloxone	12,500		
Tryptamine	1,500	Naltrexone	6,250		
p-Hydroxyamphetamine	800	Oxycodone	20		
(+) 3,4-Methylenedioxyamphetamine (MDA)	150	Secorbarbital	50,000		
l-Amphetamine	4,000	Oxymorphone	100		
COCAINE (COC)		Hydromorphone	25,000		
Benzoylecgonine	20	OPIATE (OPI)			
Cocaine	20	Morphine	40		
Cocaethylene	25	Codeine	10		
Ecgonine	1,500	Ethylmorphine	24		
Ecgonine methylester	12,500	Hydromorphine	100		
N-Acetylprocainamide	12,500	Hydrocodone	100		
Chlordiazepoxide	12,500	Levorphanol	400		
MARIJUANA (THC)		Oxycodone	25,000		
11-nor-Δ ⁹ -THC-9 COOH	30	Morphine 3-β-d-glucuronide	50		
Cannabinol	31,500	Norcodeine	1,500		
11-nor-Δ ⁸ -THC-9 COOH		Normorphine	12,500		
Δ^{8} -THC	6,000	Nalorphine	10,000		

Δ^9 -THC	20,000	Oxymorphone	25,000
METHAMPHETAMINE (MET)		Thebaine	1,500
d-Methamphetamine	50	Diacetylmorphine (Heroin)	50
Fenfluramine	60,000	6-Monoacetylmorphine (6-MAM)	25
p-Hydroxymethamphetamine	400	Bilirubin	3,500
Methoxyphenamine	25,000	METHADONE (MTD)	
3,4-Methylenedioxymethamphetamine (MDMA)	50	Methadone	45
1-Phenylephrine	4,000	Doxylamine	50,000
Procaine	2,000	Estrone-3-sulfate	50,000
(1R,2S)-(-) Ephedrine	400	Phencyclidine	50,000
1-Ephedrine	400	PHENCYCLIDINE (PCP)	
Mephentermine	800	Phencyclidine	10
(-) Deoxyephedrine, L-Methamphetamine	3,000	Tetrahydrozoline	50,000
Ephedrine	800		

Cross-Reactivit

A study was conducted to determine the cross-reactivity of the test with compounds spiked into drug-free PBS stock. The following compounds demonstrated no false positive results on the SureScreen Multi-Drug One Step Multi-Line Screen Test Device (Oral Fluid) when tested at concentrations up to 100 µg/mL.

Non Cross-Reacting Compounds Diclofenac MDEA

Acetaminophen

d,l-Propranolol

Acctaninophen	Diciolchac	WIDLA	u,i-i iopianoioi
Acetophenetidine	Dicyclomine	Meperidine	d-Propoxyphene
Acetylsalicylic acid	Diflunisal	Meprobamate	d-Pseudoephedrin
Aminopyrine	Digoxin	Methylphenidate	Quinacrine
Amoxicillin	Diphenhydramine	Nalidixic acid	Quinine
Ampicillin	l-Ψ-Ephedrine	Naproxen	Quindine
Amitryptyline	β-Estradiol	Niacinamide	Ranitidine
Amobarbital	Ethyl-p-aminobenzoate	Nifedipine	Salicylic acid
Ascorbic acid	Cannabidiol	Nimesulide	Sulfamethazine
Apomorphine	l-Epinephrine	Norethindrone	Sulindac
Aspartame	Erythromycin	d-Norpropoxyphene	Temazepam
Atropine	Fenoprofen	Noscapine	Tetracycline
Benzilic acid	Furosemide	d,l-Octopamine	Tetrahydrocortiso
Benzoic acid	Gentisic acid	Oxalic acid	3-acetate
Benzphetamine	Hemoglobin	Oxazepam	Tetrahydrocortiso
Buspirone	Hydralazine	Oxolinic acid	3(β-d-glucuronic
d,l-Brompheniramine	Hydrochlorothiazide	Oxymetazoline	Theophylline
Caffeine	Hydrocortisone	Papaverine	Thiamine
Chloral hydrate	o-Hydroxyhippuric acid	Penicillin-G	Thioridazine
Chloramphenicol	β-Hydroxynorephedrine	Pentazocine	d,l-Tyrosine
Chlorothiazide	5-Hydroxytryptamine	Pentobarbital	Tolbutamide
d,l-Chloropheniramine	(Serotonin)	Perphenazine	Trazodone
Chlorpromazine	3-Hydroxytyramine	Phenelzine	Triamterene
Chloroquine	Ibuprofen	Trans-2-phenylcyclo-	Trifluoperazine
Cholesterol	Imipramine	propylamine	Trimethoprim
Clonidine	Iproniazid	Phentermine	Trimipramine
Cortisone	(-)Isoproterenol	Phenylpropanolamine	d,l-Tryptophan
1-Cotinine	Isoxsuprine	Prednisolone	Tyramine
Creatinine	Ketamine	Phenolbarbital	Uric acid
Clomipramine	Ketoprofen	Prednisone	Verapamil
Deoxycorticosterone	Labetalol	Promazine	Zomepirac
Dextromethorphan	Loperamide	Promethazine	
Diazepam	Maprotiline		

BIBLIOGRAPHY Moolchan E, et al. Saliva and Plasma Testing for Drugs of Abuse: Comparison of the

- Disposition and Pharmacological Effects of Cocaine. Addiction Research Center, IRP, NIDA, NIH, Baltimore, MD. As presented at the SOFT-TIAFT meeting October 1998.
- 2. Schramm W., et al. Drugs of Abuse in Saliva: A Review. J Anal Tox, 16 (1):1-9, 1992.
- Kim I, et al. Plasma and oral fluid pharmacokinetics and pharmacodynamics after oral codeine administration. Clin Chem, 48 (9):1486-96, 2002.
- Kang GI and Abbott FS. Analysis of methadone and metabolites in biological fluids with gas chromatography-mass spectrometry. J Chromatogr. 231(2); 311-319. Sept 1982.
- McCarron MM, et al. Detection of Phencyclidine Usage by Radioimmunoassay of Saliva. J Anal Tox. 8 (5):197-201, 1984.

Index of Symbols

□i	Consult instructions for use	Σ	Tests per kit	<u>~~</u>	Manufacturer
	For in vitro diagnostic use only	X	Use by	2	Do not reuse
2°C - 30°C	Store between 2-30°C	LOT	Lot Number	REF	Catalog #

Breathalyser Direct Ltd Units 1 & 2 Kingham Rd Churchill Oxon OX7 6NE

